niusouti.com

已知数列{an}的通项公式为an=2n,数列{bn}的通项公式为bn=3n+2.若数列{an}和{bn}的公共项顺序组成数列{cn},则数列{cn}的前3项之和为( )A.248 B.168 C.128 D.19 E.以上选项均不正确

题目
已知数列{an}的通项公式为an=2n,数列{bn}的通项公式为bn=3n+2.若数列{an}和{bn}的公共项顺序组成数列{cn},则数列{cn}的前3项之和为( )

A.248
B.168
C.128
D.19
E.以上选项均不正确

相似考题
更多“已知数列{an}的通项公式为an=2n,数列{bn}的通项公式为bn=3n+2.若数列{an}和{bn}的公共项顺序组成数列{cn},则数列{cn}的前3项之和为( )”相关问题
  • 第1题:

     一个等差数列,它的开始四项之和为70,最后四项之和为10,所有项的和为640,则这个数列一共有( )项。

    A、 56  B、 60  C、 64  D、 72


    因为前四项之和为40,最后四项之和为80 所以a1+an=(40+80)/4=30 Sn=n(a1+an)/2=30n/2=210 n=14

     

  • 第2题:

    若数列{xn}满足条件x1=3,xn+1=(x2n+1)/2xn ,则该数列的通项公式xn=____.


    参考答案

  • 第3题:

    设{an}与{bn}为两个数列,下列说法正确的是().


    答案:D
    解析:

  • 第4题:

    —个公比为2的等比数列,第n项与前n-1项和的差等于5,则此数列前4项之和为:

    A.70
    B.85
    C.80
    D.75

    答案:D
    解析:

  • 第5题:

    已知等比数列{an}的各项都是正数,且a1+a3=10,a2+a3=6.
    (I)求{an}的通项公式;
    (II)求{an)的前5项和.


    答案:
    解析:

  • 第6题:

    已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
    (Ⅰ)设bn=an+1-2an,求证:数列{bn)是等比数列;
    (Ⅱ)设求证:数列{cn}是等差数列;
    (Ⅲ)求数列{an}的通项公式及前n项和.


    答案:
    解析:



  • 第7题:

    已知数列{%}的前n项和是
    (1)求证:数列{an}是等比数列:
    (2)记的前n项和Tn的最大值及相应的n值。


    答案:
    解析:

  • 第8题:

    (10分)等比数列{an}各项均为正数,且2a1+3a2=1,a32=9a2a6。
    (1)求数列{an}通项公式;
    (2)



    答案:
    解析:

  • 第9题:

    已知数列{an}满足a1=2,an+1=3an+2(n∈N*),
    (1)求数列{an}的通项公式;



    答案:
    解析:

  • 第10题:

    已知数列{an}的前n项和是Sn,且2Sn+an=1(n∈N*)。
    (1)求证:数列{an}是等比数列;
    (2)记bn=10+log9an,求{bn}的前n项和Tn的最大值及相应的n值。


    答案:
    解析:


  • 第11题:

    单选题
    一个数列,前两项是1,从第三项开始,每一项都等于前两项之和,称为:()。
    A

    求和数列

    B

    加和数列

    C

    子空间数列

    D

    斐波那契数列


    正确答案: B
    解析: 暂无解析

  • 第12题:

    单选题
    “斐波那契数列”在求通项公式时,没有用到的知识是:()。
    A

    一元二次方程求根公式

    B

    求极限

    C

    等比数列通项公式

    D

    二元一次方程组解法


    正确答案: A
    解析: 暂无解析

  • 第13题:

    已知数列{an}的通项公式为an =(4 9) n-1 - (2 3) n-1 (n ∈ N∗ ),则数列{an}( ).

    (A)有最大项,没有最小项.

    (B)有最小项,没有最大项.

    (C)既有最大项又有最小项.

    (D)既没有最大项也没有最小项.


    参考答案C

  • 第14题:

    一个等差数列,它的开始四项之和为70,最后四项之和为10,所有项的和为640,则这个数列一共有( )项。

    A、 56

    B、 60

    C、 64

    D、 72


    正确答案:C
    C 解析:由等差数列的性质可知,等差数列的和为项数乘以平均数。本题中,由前四项和后四项的和,可求出平均数为(70+10)÷8=10,因此项数为 640÷10=64。故本题正确答案为C。

  • 第15题:

    一个公比为2的等比数列,第n项与前n-1项和的差等于3,则此数列的前4项之和为:



    A.54
    B.45
    C.42
    D.36

    答案:B
    解析:
    设首项为a1,则第n项为a1×2 n-1,前n-1项和为两式相减得到a1 =3,因此数列前四项之和为3×(24-1)=45.

  • 第16题:

    已知等差数列前n项和
    (Ⅰ)求这个数列的逋项公式;
    (II)求数列第六项到第十项的和.


    答案:
    解析:

  • 第17题:

    已知等比数列{an}的各项都是正数,且a1+a3=10,a2+a3=6.
    (Ⅰ)求{an}的通项公式;
    (Ⅱ)求{an}的前5项和.


    答案:
    解析:
    解:(Ⅰ)设(an)的公比为q,由已知得

  • 第18题:

    已知数列(1)求证:数列是等差数列:
    (2)求数列的通项公式。


    答案:
    解析:
    (2)数列

  • 第19题:

    一个等差数列首项为32,该数列从第15项开始小于1,则此数列的公差d的取值范围是().?


    答案:A
    解析:

  • 第20题:

    (10分)已知数列{an}满足a1=3,an+1= an +2n,
    (1)求{ an }的通项公式an;
    (2)若bn=n an,求数列{bn}的前n项和sn。


    答案:
    解析:

  • 第21题:

    (10分)已知数列{an}的前n项和Sn=2n+1-k(其中k为常数):
    (1)求数列{ an }的通项公式;(4分)
    (2)若a1=2,求数列{n an }的前n项和Tn。(6分)


    答案:
    解析:

  • 第22题:

    在移动平均中,设移动n年则()。

    • A、当n为偶数时,移动后所得新数列较原数列首尾各缺n∕2项
    • B、当n为奇数时,移动后所得新数列较原数列首尾缺(N-1)∕2项
    • C、当n为偶数时,移动后所得新数列较原数列首尾缺n项
    • D、当n为奇数时,移动后所得新数列较原数列首尾缺n项

    正确答案:A,B

  • 第23题:

    单选题
    数列“bn=b1nqn-1”为:()。
    A

    等差数列

    B

    常数列

    C

    等比数列

    D

    无法确定


    正确答案: D
    解析: 暂无解析