niusouti.com
更多“为什么空分设备中规定要经常排放相当于1%氧产量的液氧到塔外蒸发?”相关问题
  • 第1题:

    冷凝蒸发器中为什么气氮能够蒸发液氧?


    正确答案: 在冷凝蒸发器中,来自上塔底部的液氧被来自下塔顶部的气氮加热而蒸发,部分作为氧产品而引出,部分作为上升气参与上塔的精馏;气氮则放出热而冷凝成液氮,部分作为回流液参与下塔的精馏,部分节流至上塔顶部参与上塔的精馏。这说明在冷凝蒸发器中,气氮的温度是高于液氧的。
    我们知道,在同样的压力下,氮的饱和温度是比氧的饱和温度要低。在标准大气压(0.1013MPA.下,氮的液化(气化)温度为-195.8℃,氧的液化(气化)温度为-183℃。但是,该饱和温度是与压力有关的,随着压力提高而提高。由于下塔顶部的绝对压力在0.58MPa左右,相应的气氮冷凝温度为-177℃;上塔液氧的绝对压力约为0.149MPa,相应的气化温度为-179℃。所以,在冷凝蒸发器中,气氮与液氧约有的2℃的温差。热量是由气氮传给液氧。

  • 第2题:

    为什么全低压空分设备中规定要经常排放相当于1%氧产量的液氧到塔外蒸发呢?


    正确答案: 以往认为,分馏塔爆炸的原因是乙炔引起的,在防爆系统中设有液空和液氧吸附器,吸附乙炔的效率可达98%左右。国外经过多年实践和研究发现,爆炸源除了乙炔之外,尚有饱和及不饱和的碳氢化合物--烃类,如乙烷、乙烯、丙烷、丙烯等在液氧中富集。这些物质在吸附器中也能被吸附掉一部分,但是吸附效率只有60%~65%。由于它们在液氧中的分压很低,随气氧一起排出的数量很少(除甲烷外),剩下的就会在液氧中逐渐浓缩,一旦增浓到爆炸极限就有危险。
    为了避免液氧中烃类浓度的增加,根据物料平衡,需要从主冷引出一部分液氧,把烃类从主冷抽出一部分。抽出的液氧最小量相当于气氧产量的1%再另行气化。还规定把液氧面提高,避免产生液氧干蒸发(在蒸发管出口不含液氧),防止碳氢化合物附着在管壁上,以增加设备的安全性。在国产全低压空分流程中也已采用了这项措施。

  • 第3题:

    小型空分设备启动时为什么节一1阀开启过小,不会产生液氧?


    正确答案: 对中压流程制氧机,膨胀机内是不允许出现液体的。当空气节流阀节-1阀尚未打开,第二热交换器尚未投入工作时,单靠膨胀空气进下塔是没有液体产生的。在冷却过程中,当膨胀机后温度达到-140℃时,需打开高压空气节流阀节-1阀。此时,节-1阀前的温度迅速下降,节流后才能有部分空气液化,在塔内开始逐渐积累起液体。
    主冷中液氧的产生完全是靠下塔的液空节流至上塔,下流液体把塔板冷却后,才在冷凝蒸发器在逐渐积累起来的。因此,液体的积累归根结底取决于通过节-1阀产生的液体的数量。节-1阀的开度过大,流经第二热交换器的气量增加,节流前的温度升高,节流后就不会液化;若节-1阀开度过小,节流后的液体量也会过少。此时,通过膨胀机后的气体是过热的,它将使一部分液体又被气化。并且,膨胀量相对过大,第二热交换器换热不充分,则会加重第一热交换器的负担,使热交换器的热端温差增大,冷损增加。当其产冷量和冷损量相平衡时,就没有富裕的冷量用来产生液体,液氧面就可能不会产生。因此,在操作中必须使节-1阀的开度适当,与膨胀机的进气量相配合,在保持高压的同时,使膨胀机后温度保持在-140~-160℃之间。

  • 第4题:

    操作工排放液氧蒸发成气氧后,氧气能被衣服等织物吸附,遇火源易引起燃烧危险。


    正确答案:正确

  • 第5题:

    开车积累液氧面时,是否一定要保持液空液面?为什么?


    正确答案:在启动积液阶段,下塔首先出现液空,而上塔本身并不能产生液体,靠下塔液体打入上塔。为尽快把冷量送到上塔,积累氧液位,可暂不顾及液空液位,让尽可能多的液空进入塔。

  • 第6题:

    为什么中压空分设备可以通过提高空气压力来提高液氧面?


    正确答案: 空分塔的冷量是否充足,集中反映在主冷的液氧面上。当冷量不足以平衡冷损时,主冷的液氧面会慢慢下降。如果不是由于设备泄漏等故障,应设法增大制冷量来弥补冷损,恢复液氧面。
    对于低压空分设备,空气压力接近下塔压力,并不是随意可以提高。而中压空分设备的空气压力远高于下塔压力,它分别通过节流阀和膨胀机膨胀后再进入下塔。由于工作压力不影响精馏工况,可根据冷量的需要来决定。并且,节流效应制冷量在总制冷量中所占的比例较大。例如,当工作压力为3.0MPa时,每立方米加工空气的节流效应制冷量为8.4kJ/m3,每立方米膨胀空气的膨胀机制冷量为37.7kJ/m3。一般,膨胀空气量为加工空气量的70%左右,因此,节流效应制冷量要占总制冷量的1/4左右。对活塞式膨胀机流程,当配合调节膨胀机凸轮和高压空气节流阀,使高压空气压力提高时,则膨胀机制冷量与节流效应制冷量同时增大,对提高液氧液面效果显著。
    当膨胀机的凸轮已关得很小,不能靠它调节,但又需要更多的冷量时,可采取关小进膨胀机的通-6阀来保持高压。这时,虽然膨胀机前的压力没有提高,但节流效应制冷量增大,总的制冷量仍可增加有利于加速液体积累。这种调节方法只有在通-6阀关得很小(一转以内),高压空气压力与膨胀机前压力不等时才有效。并且每次调节只能转动3°~5°,不能调得过大。

  • 第7题:

    为什么对液空用简单加热蒸发的方法不能制取纯液氧?


    正确答案: 在将液化空气加热时,虽然氮的沸点低于氧沸点,氮应该是先蒸发。但是,由于氮、氧分子的相互影响,在氮分子从液体中蒸发的同时,也伴有氧分子蒸发,只是氮分子的蒸发相对地比氧分子容易而已,即在蒸气中的氮组分要比液体中的氮组分大。例如,氮的摩尔成分为79.1%N2的液空在0.1MPa下加热蒸发时,开始产生的蒸气中的氮摩尔成分为93.7%N2,其余为氧。当液空蒸发了50%以后,由于有更多的氧也蒸发出来,蒸气中的氮的摩尔成分降为89.8%N2,液体中氧的摩尔成分为31.5%O2(68.5%N2);当液空蒸发了90%以后,蒸气中氮的摩尔成分为82%N2,液体中氧的摩尔成分为475%O2(53%N2)。虽然液体中的氧浓度随着蒸气中含氧量增加而提高,但是由于蒸气中氧的摩尔成分最高也只能达到20.9%O2(当液空全部蒸发完时),所以,最后蒸发的液体中氧的摩尔成分最高也只有51.5%O2(48.5%N2)。

  • 第8题:

    小型空分设备冷凝蒸发器液氧中呈现浑浊、沉淀是什么原因,如何处理?


    正确答案:液氧中发现有浑浊乳白色沉淀物,且沉淀物呈雪状,随温度升高而挥发,这显然是二氧化碳进塔所致。二氧化碳进塔是纯化器工作不佳或是分子筛老化等因素造成的。因此,在操作时必须注意:
    1)对水冷式纯化器,在纯化器加温时,必须遵循先把水放掉、在吹冷及工作周期内再加水冷却这样一个操作顺序进行。加温时外围有冷水会使纯化器周围的分子筛再生不完善,并逐渐失去吸附作用。
    2)再生气出口温度和再生氮气量(不要太小)要配合好。纯化器出口温度达到要求后,还要再加温一段时间,接着再吹冷。吹冷时,出口温度开始应上升,随后才下降。至于升到什么温度,则要符合操作说明书规定。
    3)纯化器出故障,往往与三级冷却器工作不正常(指泄漏)以及水分离器吹除不当有关,即有水进入纯化器。停车时应检查一下,冷却器有没有泄漏。因为停车时,水会从缝隙进入空气冷却管,再开车时水就会进入纯化器。水分离器要按规定定期吹除,吹除要讲求方法得当。有的水分离器设计不好,吹除又太猛,水没有被吹走,导致水分进入纯化器。最好不要将吹除管与总管连接,否则,无法判断水分是否已被吹除掉。吹除要缓慢。特别在夏季,气温高,水分多,操作要特别注意。
    4)分子筛一般使用寿命为2000h,相当于长期运转,8h切换一次的纯化器每隔4年至5年更换一次。
    5)应尽可能地降低进入分子筛纯化器前的空气温度。一是可以减少水分带入;二是可以提高分子筛的吸附容量。
    6)在纯化器空气出口管处,定期测定气体中的二氧化碳含量。最好能配二氧化碳自动分析仪,但价格较高。纯化器出口空气中二氧化碳的体积分数应小于2×10-6。一旦达到转效点,二氧化碳含量就会直线增加。因此,知道了转效点,纯化器的工作周期应提前半小时左右切换,以确保二氧化碳不带入塔内。

  • 第9题:

    为什么在有的分子筛净化流程的空分设备中仍设置液氧自循环吸附系统?


    正确答案: 关于分子筛净化流程的空分设备中是否还要设置液氧防爆系统,看法不一。德国引进的以及国产的这种流程,不再设置防爆系统。但从美国和法国引进的大型分子筛净化流程的空分设备仍设置液氧自循环吸附系统。设置该系统的理由是:
    1)从液氧防爆的观点看,设置比不设置更安全。因为在分子筛纯化器中,分子筛可以对空气中的杂质水分、二氧化碳、乙炔共吸附。对极性水分子的吸附量较大,其次吸附不饱和烃乙炔,而后吸附二氧化碳。虽然,分子筛能将空气中的乙炔和一些碳氢化合物较彻底地吸附并清除掉,但是,分子筛对空气中所包含的某些碳氢化合物是不吸附的,例如:分子筛对甲烷完全不吸附,对乙烷、乙烯及丙烷也只能部分吸附。这些没被吸附的碳氢化合物随空气进入精馏塔下塔,溶解在液空中,随液空打入上塔,随上塔回流液下流,积聚在上塔底部的液氧中。由于这些碳氢化合物的累积,有可能造成制氧机爆炸事故,这种事故也发生过。所以,为了确保制氧机的安全运行,分子筛纯化流程也有设置液氧循环吸附器的,以液相吸附的方式清除各种碳氢化合物。
    2)液氧中的微量乙炔,经过长时间在液氧中积聚,可能会慢慢增浓,甚至达到危险浓度。有了液氧自循环吸附系统可保证乙炔不会增浓。
    3)考虑到分子筛吸附系统也会有工作不正常的情况。例如再生不彻底,空冷塔带水等因素也会使危险杂质进入液氧中,有了自循环吸附系统则可更放心。
    因为大型空分设备每小时进入装置的空气量很大,乙炔等碳氢化合物及二氧化碳等杂
    质由于分子筛吸附不均匀,或多或少会带进塔内。在流程中没有液空吸附器,增设液氧自循环吸附系统则更为可靠。并且,安设液氧自循环吸附系统后,主冷凝蒸发器的传热面积可以相应减少。

  • 第10题:

    下列因素可能影响到产品氧纯度的有()

    • A、氧气取出量过大,液氧中氧纯度过低;
    • B、进上塔膨胀空气量过大;
    • C、冷凝蒸发器液氧面过高;
    • D、塔板效率下降。

    正确答案:A,B,C,D

  • 第11题:

    填空题
    为防止空分装置液氧中的乙炔积聚,宜连续从空分装置中抽取部分液氧,其数量不低于氧产量的()。

    正确答案: 1%
    解析: 暂无解析

  • 第12题:

    问答题
    冷凝蒸发器中为什么气氮能够蒸发液氧?

    正确答案: 在冷凝蒸发器中,来自上塔底部的液氧被来自下塔顶部的气氮加热而蒸发,部分作为氧产品而引出,部分作为上升气参与上塔的精馏;气氮则放出热而冷凝成液氮,部分作为回流液参与下塔的精馏,部分节流至上塔顶部参与上塔的精馏。这说明在冷凝蒸发器中,气氮的温度是高于液氧的。
    我们知道,在同样的压力下,氮的饱和温度是比氧的饱和温度要低。在标准大气压(0.1013MPA.下,氮的液化(气化)温度为-195.8℃,氧的液化(气化)温度为-183℃。但是,该饱和温度是与压力有关的,随着压力提高而提高。由于下塔顶部的绝对压力在0.58MPa左右,相应的气氮冷凝温度为-177℃;上塔液氧的绝对压力约为0.149MPa,相应的气化温度为-179℃。所以,在冷凝蒸发器中,气氮与液氧约有的2℃的温差。热量是由气氮传给液氧。
    解析: 暂无解析

  • 第13题:

    空分装置积液阶段液氧中总烃含量高可通过()来解决。

    • A、加大液氧排放
    • B、减小液氧排放
    • C、增加膨胀机负荷
    • D、减小膨胀机负荷

    正确答案:A

  • 第14题:

    为什么空分设备中规定要经常排放相当于1%氧产量的液氧到塔外蒸发?


    正确答案:以往认为,分馏塔爆炸的原因是乙炔引起的,经过多年实践和研究发现,爆炸源除了乙炔之外,还有饱和及不饱和的碳氢化合物-烃类,如乙烷、乙烯、丙烷、丙烯等在液氧中富集,由于它们在液氧中的分压很低,随气氧一起排出的数量很少(除甲烷外)剩下的就会在液氧中逐渐浓缩,一旦增浓到爆炸极限就有危险。
    为了避免液氧中烃类浓度的增加,根据物料平衡,需要从主冷引出一部分液氧,把烃类从主冷抽出一部分。抽出的液氧最小量相当于气氧产量的1%再另行气化。还规定把液氧面提高,避免产生液氧干蒸发(在蒸发管出口不含液氧),防止碳氢化合物附着管壁上,以增加设备的安全性。

  • 第15题:

    为什么规定要连续不断的取出相当于1%氧产量的液氧?


    正确答案: 空分塔的爆炸源除乙炔外,还有饱和及不饱和碳氢化合物--烃类,如乙炔、乙烯、丙烷、丙烯等在液氧中富集,这些物质在吸附器中吸附掉一部分,但还有一部分未被吸附,由于它们的分压很低,随气氧排出的数量很少,剩下的就会在液氧中逐渐浓缩,一旦达到爆炸极限就有危险,为了避免液氧中烃类的增加,从主冷中引出一部分液氧到塔外,这是从安全生产角度采取的措施

  • 第16题:

    为防止空分装置液氧中的乙炔积聚,宜连续从空分装置中抽取部分液氧,其数量不低于氧产量的()。


    正确答案:1%

  • 第17题:

    空分防爆系统中,液氧经液氧吸附器除掉浓缩于液氧中的()和其他碳氢化合物,保证设备的安全运转。


    正确答案:乙炔

  • 第18题:

    从主冷中()排放或取出相当于()氧产量的液氧可以防止碳氢化合物的()


    正确答案:连续;1%;浓聚

  • 第19题:

    氧压机着火时,必须紧急停车并同时切断()来源,发出报警信号。排放液氧、液氮、液空,需采用()排放,应设有()和()。


    正确答案:氧气;高空气化;明显的标志;警示牌

  • 第20题:

    冷凝蒸发器中为什么液氧温度反而比气氮温度低才会吸热蒸发?


    正确答案: 在冷凝蒸发器中,来自上塔底部的液氧被来自下塔顶部的气氮加热而蒸发,部分作为氧产品而引出,部分作为上升气参与上塔的精馏;气氮则放出热而冷凝成液氮,部分作为回流液参与下塔的精馏,部分节流至上塔顶部参与上塔的精馏。这说明在冷凝蒸发器中,气氮的温度是高于液氧的。
    我们知道,在同样的压力下,氮的饱和温度是比氧的饱和温度要低。在标准大气压(0.1013MPa)下,氮的液化(气化)温度为-195.8℃,氧的液化(气化)温度为-183℃。但是,该饱和温度是与压力有关的,随着压力提高而提高。由于下塔顶部的绝对压力在0.58MPa左右,相应的气氮冷凝温度为-177℃;上塔液氧的绝对压力约为0.149MPa,相应的气化温度为-179℃。所以,在冷凝蒸发器中,气氮与液氧约有的2℃的温差。热量是由气氮传给液氧。
    需要注意的是,1kg液氧的蒸发潜热与lkg气氮的冷凝潜热是不相等的。在上述温度下,氧的气化潜热为207kJ/kg,氮的冷凝潜热为168kJ/kg。因此,热量由气氮传给液氧后,氮的冷凝量约为氧的蒸发量的1.23倍。

  • 第21题:

    全低压制氧机在开始积累液氧时,是否一定要保持液空液面,为什么?


    正确答案: 全低压制氧机的启动积液阶段,是下塔首先出现液空,然后在上塔出现液氧。塔内积累液体所需的冷量主要来自膨胀机,利用膨胀后的低温气体使一部分空气在液化器中液化。而上塔本身并不能产生液体,它主要是靠将下塔的液体打入上塔。在积液阶段,为了尽快地积累起液面,主要是应使冷量尽可能多地转移到塔内,要避免切换式换热器冷量过剩而出现过冷以及热端温差扩大、冷损增加的现象。
    至于如何将膨胀空气冷量回收和转移到塔内,无论是靠液化器先将冷量转移给下塔,然后再供给上塔,还是通过过冷器直接转移给上塔都是可以的。如果液空过冷器的冷流体通道可以与膨胀机后的通道直接接通的话(例如将过冷器与液化器设置成一体),也就可以利用液空过冷器回收膨胀气体的部分冷量直接给上塔,过冷器同时起到液化器的作用。即同时靠液化器与过冷器将冷量转移到塔内,可加速液体的积累。在这种情况下,可暂时不顾及保持下塔的液面,开大液空节流阀,让尽可能多的液空夹带气体通过过冷器,加强过冷器的换热,以回收更多的冷量。有的制氧机在流程设计中甚至不设置液化器,只靠过冷器在启动时作为液化器使用,先从上塔开始积累液体。

  • 第22题:

    单选题
    测得空分塔内液氧温度-180℃,放出塔外后液氧温度将()。
    A

    上升

    B

    下降

    C

    不变

    D

    都有可能


    正确答案: B
    解析: 暂无解析

  • 第23题:

    单选题
    空分装置积液阶段液氧中总烃含量高可通过()来解决。
    A

    加大液氧排放

    B

    减小液氧排放

    C

    增加膨胀机负荷

    D

    减小膨胀机负荷


    正确答案: A
    解析: 暂无解析

  • 第24题:

    问答题
    为什么全低压空分设备中规定要经常排放相当于1%氧产量的液氧到塔外蒸发呢?

    正确答案: 以往认为,分馏塔爆炸的原因是乙炔引起的,在防爆系统中设有液空和液氧吸附器,吸附乙炔的效率可达98%左右。国外经过多年实践和研究发现,爆炸源除了乙炔之外,尚有饱和及不饱和的碳氢化合物--烃类,如乙烷、乙烯、丙烷、丙烯等在液氧中富集。这些物质在吸附器中也能被吸附掉一部分,但是吸附效率只有60%~65%。由于它们在液氧中的分压很低,随气氧一起排出的数量很少(除甲烷外),剩下的就会在液氧中逐渐浓缩,一旦增浓到爆炸极限就有危险。
    为了避免液氧中烃类浓度的增加,根据物料平衡,需要从主冷引出一部分液氧,把烃类从主冷抽出一部分。抽出的液氧最小量相当于气氧产量的1%再另行气化。还规定把液氧面提高,避免产生液氧干蒸发(在蒸发管出口不含液氧),防止碳氢化合物附着在管壁上,以增加设备的安全性。在国产全低压空分流程中也已采用了这项措施。
    解析: 暂无解析