niusouti.com

设函数在(a,b)内连续,则在(a,b)内()。A、f(x)必有界B、f(x)必可导C、f(x)必存在原函数D、D.必存在一点ξ∈(a,,使f(ξ)=0

题目

设函数在(a,b)内连续,则在(a,b)内()。

  • A、f(x)必有界
  • B、f(x)必可导
  • C、f(x)必存在原函数
  • D、D.必存在一点ξ∈(a,,使f(ξ)=0

相似考题
更多“设函数在(a,b)内连续,则在(a,b)内()。A、f(x)必有界B、f(x)必可导C、f(x)必存在原函数D、D.必存在一点ξ∈(a,,使f(ξ)=0”相关问题
  • 第1题:

    设函数f(x)在(-∞,+∞)上是奇函数,在(0,+∞)内有f'(x)<0, f''(x)>0,则在(-∞,0)内必有:
    A. f'>0, f''>0 B.f'<0, f''<0
    C. f'<0, f''>0 D. f'>0, f''<0


    答案:B
    解析:
    提示:已知f(x)在(-∞,+∞)上是奇函数,图形关于原点对称,由已知条件f(x)在(0,+∞),f'<0单减, f''>0凹向,即f(x)在(0,+∞)画出的图形为凹减,从而可推出关于原点对称的函数在(-∞,0)应为凸减,因而f'<0, f''<0。

  • 第2题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:
    A. f'(x)>0, f''(x)>0 B.f'(x)<0, f''(x)>0
    C. f'(x)>0, f''(x)<0 D. f'(x)<0, f''(x)<0


    答案:B
    解析:
    提示:已知f(x)在(-∞,+∞)上是偶函数,函数图像关于y轴对称,已知函数在(0,+∞),f'(x)>0, f''(x)>0,表明在(0,+∞)上函数图像为单增且凹向,由对称性可知,f(x)在(-∞,0)单减且凹向,所以f'(x)<0, f''(x)>0。

  • 第3题:

    (Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.


    答案:
    解析:

  • 第4题:

    设y=f(x)是(a,b)内的可导函数,x,x+△x是(a,b)内的任意两点,则:

    A. △y=f’(x)△x
    B.在x,x+△x之间恰好有一点ξ,使△y=f’(ξ)△x
    C.在x,x+△x之间至少存在一点ξ,使△y=f’(ξ)△x
    D.在x,x+△x之间的任意一点ξ,使△y=f’(ξ)△x

    答案:C
    解析:

  • 第5题:

    设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。

    A.(x-a)[f(x)-f(a)]≥0
    B.(x-a)[f(x)-f(a)]≤0
    C.
    D.

    答案:C
    解析:

  • 第6题:

    设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。

    A.f(x)在(a,b)上必有最大值

    B.f(x)在(a,b)上必一致连续

    C.f(x)在(a,b)上必有

    D.f(x)在(a,b)上必连续

    答案:D
    解析:
    本题主要考查连续函数的特点。f(x)为开区间(a,b)上的可导函数,则可能出现极值,不一定存在最大值,当函数为分段函数时,不一定有界,故A、C两项错误。可导的函数一定连续,但连续的函数不一定可导,故D项正确。只有f(x)为闭区间[a,b]上的可导函数时才符合一致连续,故B项错误。

  • 第7题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f"(x)>0,则在(-∞,0)内必有()。

    • A、f'(x)>0,f"(x)>0
    • B、f'(x)<0,f"(x)>0
    • C、f'(x)>O,f"(x)<0
    • D、f'(x)<0,f"(x)<0

    正确答案:B

  • 第8题:

    问答题
    设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

    正确答案:
    因为f(x)不恒为常数,且f(a)=f(b),故必存在一点c∈(a,b),满足f(c)≠f(a)=f(b)。
    若f(c)>f(a)=f(b),f(x)在[a,c]上满足拉格朗日中值定理,故至少存在一点ξ∈(a,c)⊂(a,b),使得f′(ξ)=[f(c)-f(a)]/(c-a)>0。
    若f(c)0。综上命题得证。
    解析: 暂无解析

  • 第9题:

    问答题
    设函数f(x)在(a,b)内连续,a<x1<x2<…<xn<b,证明:必∃ξ∈(a,b),使f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。

    正确答案:
    设f(x)在[x1,xn]上的最大值为M,最小值为m。
    则由题设可知,f(x)在[x1,xn]上连续,则它在[x1,xn]上必有最大值和最小值,则m≤[f(x1)+f(x2)+…+f(xn)]/n≤M。
    由最值介值定理可知,必∃ξ∈[x1,xn]⊂(a,b),使得f(ξ)=[f(x1)+f(x2)+…+f(xn)]/n。
    解析: 暂无解析

  • 第10题:

    问答题
    设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

    正确答案:
    构造函数F(x)=x2f(x),由于f(x)在[0,1]上二阶可导,则F(x)也在[0,1]上二阶可导。
    又F′(0)=[2xf(x)+x2f′(x)]x=0=0,F″(x)=2f(x)+4xf′(x)+x2f″(x)。
    故根据泰勒公式有F(1)=F(0)+F′(0)(1-0)+F″(ξ)(1-0)2/(2!)=0,其中ξ∈(0,1)。
    所以F″(ξ)/2=[2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)]/2=0。
    即2f(ξ)+4ξf′(ξ)+ξ2f″(ξ)=0。
    解析: 暂无解析

  • 第11题:

    问答题
    设f(x)在[a,b]上连续(a>0),在(a,b)内可导,证明:必∃ξ∈(a,b),使[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。

    正确答案:
    构造函数φ(x)=(x2-b2)[f(a)-f(x)],则φ′(x)=2x[f(a)-f(x)]-(x2-b2)f′(x)在(a,b)上有意义。
    而φ(a)=0=φ(b)。则由罗尔定理得,必∃ξ∈(a,b),使φ′(ξ)=2ξ[f(a)-f(ξ)]-(ξ2-b2)f′(ξ)=0。
    即[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。
    解析: 暂无解析

  • 第12题:

    单选题
    设函数在(a,b)内连续,则在(a,b)内()。
    A

    f(x)必有界

    B

    f(x)必可导

    C

    f(x)必存在原函数

    D

    D.必存在一点ξ∈(a,,使f(ξ)=0


    正确答案: C
    解析: 暂无解析

  • 第13题:

    设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,
    则在(- ∞ ,0)内必有:
    (A) f ' > 0, f '' > 0 (B) f ' 0
    (C) f ' > 0, f ''


    答案:B
    解析:
    解:选 B。
    偶函数的导数是奇函数,奇函数的导数是偶函数。
    f (x)是偶函数,则 f '(x)是奇函数,当x > 0时, f '(x) > 0,则x f '(x)是奇函数,则 f ''(x)是奇函数,当x > 0时, f '(x) > 0,则x 0;
    点评:偶函数的导数是奇函数,奇函数的导数是偶函数。

  • 第14题:

    下列命题正确的是()

    A.函数f(x)的导数不存在的点,一定不是f(x)的极值点
    B.若x0为函数f(x)的驻点,则x0必为f(x)的极值点
    C.若函数f(x)在点x0处有极值,且f'(x0)存在,则必有f'(x0)=0
    D.若函数f(x)在点x0处连续,则f'(x0)一定存在

    答案:C
    解析:
    根据函数在点x0处取极值的必要条件的定理,可知选项C是正确的.

  • 第15题:

    若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内满足f ′(x0)=0的点x0(  )。

    A.必存在且只有一个
    B.至少存在一个
    C.不一定存在
    D.不存在

    答案:B
    解析:
    由罗尔中值定理可知:函数满足闭区间连续,开区间可导,端点函数值相等,则开区间内至少存在一个驻点ξ使得f ′(ξ)=0。

  • 第16题:

    下列命题中,正确的是( ).

    A.单调函数的导函数必定为单调函数
    B.设f´(x)为单调函数,则f(x)也为单调函数
    C.设f(x)在(a,b)内只有一个驻点xo,则此xo必为f(x)的极值点
    D.设f(x)在(a,b)内可导且只有一个极值点xo,f´(xo)=0

    答案:D
    解析:
    可导函数的极值点必定是函数的驻点,故选D.

  • 第17题:

    其中g(x)是有界函数,则f(x)在x=0点( )。

    A、极限不存在
    B、极限存在但不连续
    C、连续、但不可导
    D、可导

    答案:D
    解析:

  • 第18题:

    设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。
    A. f'(x)>0,f''(x)>0 B. f(x) 0
    C. f'(x)>0,f''(x)


    答案:B
    解析:
    提示:f(x)在(-∞,+∞)上是偶函数,f'(x)在(-∞,+∞)在上是奇函数,f''(x)在(-∞,+∞)在上是偶函数,故应选B。

  • 第19题:

    问答题
    设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。

    正确答案:
    构造函数φ(x)=sin3x·f(x),则由于f(x)在[0,π]上连续,故φ(x)也在[0,π]上连续。
    且φ′(x)=sin3x·f′(x)+3sin2xcosx·f(x)在(0,π)有意义。
    又φ(0)=φ(π)=0,根据罗尔定理得,必∃ξ∈(0,π),使φ′(ξ)=sin3ξ·f′(ξ)+3sin2ξcosξ·f(ξ)=0,即sin3ξ[f′(ξ)+3f(ξ)cotξ]=0。
    而(0,π)上sinξ≠0。故f′(ξ)+3f(ξ)cotξ=0。
    解析: 暂无解析

  • 第20题:

    单选题
    如果函数f(x)在点x0的某个邻域内恒有|f(x)|≤M(M是正数),则函数f(x)在该邻域内(  )。
    A

    极限存在

    B

    连续

    C

    有界

    D

    不能确定


    正确答案: B
    解析:
    由函数有界的定义可知:设函数f(x)的定义域为D,数集X∈D。如果存在数K1使得f(x)≤K1对任意x∈X都成立则称函数f(x)在X上有上界。故选C项。

  • 第21题:

    问答题
    设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。

    正确答案:
    构造函数φ(x)=exf(x),则由f(x)在[a,b]上连续,在(a,b)上可微,可知,φ(x)在[a,b]上连续,且φ′(x)=ex[f′(x)+f(x)]在(a,b)上有意义。
    由拉格朗日中值定理得,必∃η∈(a,b)使ebf(b)-eaf(a)=eη[f′(η)+f(η)](b-a)。
    又f(a)=f(b)=1/2,则上式为(eb-ea)/(b-a)=2eη[f′(η)+f(η)]①
    令g(x)=e2x,则g(x)在[a,b]上连续,且g′(x)=2e2x在(a,b)上有意义。
    由拉格朗日中值定理知,必∃ξ∈(a,b),使(e2b-e2a)/(b-a)=2e2ξ,即(eb-ea)/(b-a)=2e2ξ/(eb+ea)②
    由①②得2e2ξ/(eb+ea)=2eη[f′(η)+f(η)],即e2ξ=(eb+ea)eη[f′(η)+f(η)]。
    解析: 暂无解析

  • 第22题:

    问答题
    设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,且存在相等的最大值。若f(a)=g(a),f(b)=g(b),证明:  (1)存在η∈(a,b)使f(η)=g(η);  (2)存在ξ∈(a,b)使f″(ξ)=g″(ξ)。

    正确答案:
    (1)构造函数h(x)=f(x)-g(x),由f(a)=g(a),f(b)=g(b)可知,h(a)=h(b)=0。可设f(x),g(x)在(a,b)内的最大值M,分别在α∈(a,b),β∈(a,b)处取得。
    当α=β时,令η=α,则h(η)=0;
    当α≠β时,h(α)=f(α)-g(α)=M-g(α)≥0,h(β)=f(β)-g(β)=f(β)-M≤0。由介值定理可知,存在介于α和β之间的点η使得h(η)=0。综上所述,∃η∈(a,b),使得h(η)=0。
    (2)根据罗尔定理可知,∃ξ1∈(a,η),∃ξ2∈(η,b),使得h′(ξ1)=h′(ξ2)=0。再由罗尔定理可知,∃ξ∈(ξ12)⊂(a,b),使得h″(ξ)=0,即f″(ξ)=g″(ξ)。
    解析: 暂无解析

  • 第23题:

    问答题
    设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。

    正确答案:
    因f(x),f′(x)在[a,b]上连续,且c∈(a,b),则f(x)在[a,c]和[c,b]上满足拉格朗日中值定理的条件,故∃a<η121),[f(b)-f(c)]/(b-c)=f′(η2)。
    由题设可知,f(c)>0,f(a)=f(b)=0,则f′(η1)>0,f′(η2)<0。
    又f″(x)在(a,b)内存在,则f′(x)在[η12]上满足拉格朗日中值定理的条件,故f′(η2)-f′(η1)=f″(ξ)(η21)<0,其中ξ∈(a,b),从而f″(ξ)<0。
    解析: 暂无解析